If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-5=15
We move all terms to the left:
p^2-5-(15)=0
We add all the numbers together, and all the variables
p^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| -1/2n+15=-9 | | 0.7x+5=0.2x+1 | | 85=6x+x+1 | | 12x-10+10x+8=360 | | 3-3.7b=20.3b-10 | | 3x-3+x-7=90 | | 4.5x−3=6 | | -10k+11=3+-2k | | 3x-8+x+14+90=180 | | 1/3(6+9n)+4=-15 | | 18-5x=78 | | 8(x-4)=2(x-1) | | m(-7)=35 | | 2(-2+r)=8 | | 3(w-2)=10 | | 9.75t+8=18.5+15 | | Y=35*0.55^x | | 15x-4+12x-20=360 | | x+99+x/2+4x=20x | | -5/9v=25 | | 15x-4+12x-20=180 | | 15/12=x/30 | | j(-6)=24 | | 37=h/5+31 | | 73=80-x | | 15x-4=12x-20 | | 4x(3+6=4x3+4x6 | | Y=-1/6x+2 | | 73=80=x | | -2(p-5)=0 | | 45x12= | | 1^5x=-5 |